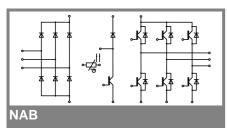
SKiiP 12NAB066V1

MiniSKiiP[®] 1

3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SKiiP 12NAB066V1

Target Data

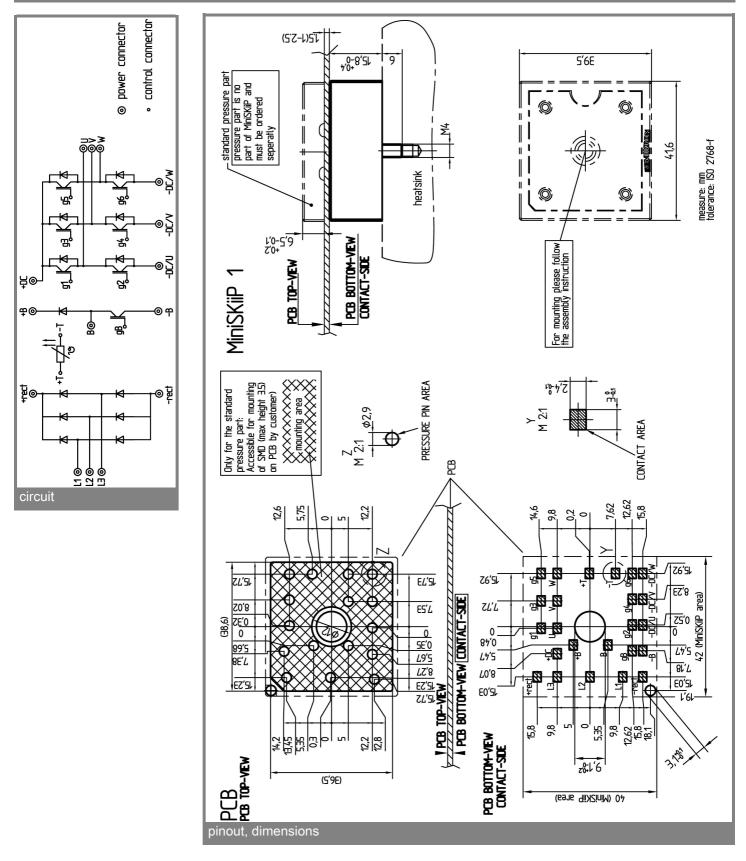
Features


- Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications

- Inverter up to 5 kVATypical motor power 2,2 kW

Remarks


• Case temperature limited to T_C = 125 °C max.

Absolute Maximum Ratings		T_s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V _{CES}		600	V				
I _C	T _s = 25 (70) °C		А				
I _{CRM}	$T_s = 25 (70) \text{ °C}, t_p \le 1 \text{ ms}$		A				
V _{GES}		± 20	V				
Т _ј		- 40 + 175	°C				
Diode - Inverter, Chopper							
I _F	T _s = 25 (70) °C		А				
I _{FRM}	$T_s = 25 (70) \ ^{\circ}C, t_p \le 1 \ ms$		А				
Т _ј		- 40 + 175	°C				
Diode - Rectifier							
V _{RRM}		800	V				
I _F	T _s = 70 °C	35	А				
I _{FSM}	t _p = 10 ms, sin 180 °, T _j = 25 °C	220	А				
i²t	t _p = 10 ms, sin 180 °, T _j = 25 °C	240	A²s				
Т _ј		- 40 + 150	°C				
I _{tRMS}	per power terminal (20 A / spring)	20	А				
T _{stg}	$T_{op} \leq T_{stg}$	- 40 + 125	°C				
V _{isol}	AC, 1 min.	2500	V				

Characte	eristics	T _s = 25 °C	, unless ot	herwise sp	pecified				
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter, Chopper									
V _{CEsat}	I _C = 10 A, T _i = 25 (125) °C		1,45 (1,65)	1,9 (2,05)	V				
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 0,5 \text{ mA}$		5,8		V				
V _{CE(TO)}	T _j = 25 (125) °C		0,9 (0,85)	1 (0,9)	V				
r _T	T _j = 25 (125) °C		55 (80)	90 (115)	mΩ				
C _{ies}	V _{CE} = 25 V, V _{GE} = 0 V, f = 1 MHz		551		nF				
C _{oes}	$V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz$		40		nF				
C _{res}	V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz		17		nF				
R _{th(j-s)}	per IGBT		1,5		K/W				
t _{d(on)}	under following conditions		-		ns				
t _r	V_{CC} = 300 V, V_{GE} = ± 15 V		-		ns				
t _{d(off)}	I _C = 10 A, T _j = 125 °C		-		ns				
t _f	$R_{Gon} = R_{Goff} = -\Omega$		-		ns				
Eon	inductive load		0,25		mJ				
E _{off}			0,45		mJ				
Diode - II	nverter, Chopper								
V _F = V _{EC}	I _F = 10 A, T _i = 25 (125) °C		1,4	1,6	V				
V _(TO)	$T_{i} = 25 (125) \ ^{\circ}C$		0,95	1	V				
r _T	T _j = 25 (125) °C		45	60	mΩ				
R _{th(j-s)}	per diode		2,5		K/W				
I _{RRM}	under following conditions		-		Α				
Q _{rr}	I _F = 10 A, V _B = 300 V		-		μC				
E _{rr}	V _{GE} = 0 V, T _i = 125 °C				mJ				
	$di_{F}/dt = -A/\mu s$								
Diode - R	Rectifier								
V _F	I _F = 15 A, T _i = 25 °C		1,1		V				
V _(TO)	T _i = 150 °C		0,8		V				
r _T	T _i = 150 °C		20		mΩ				
R _{th(j-s)}	per diode		1,5		K/W				
	ture Sensor	I			1				
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω				
Mechanie	cal Data	1			1				
w			35		g				
Ms	Mounting torque	2		2,5	Nm				
5				,-	1				

SKiiP 12NAB066V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.